sech_pulse_pwc
signals.sech_pulse_pwc(duration, segment_count, amplitude, width=None, center_time=None, *, name=None)
Create a Pwc representing a hyperbolic secant pulse.
Parameters
- duration (float) – The duration of the signal, T.
- segment_count (int) – The number of segments in the PWC.
- amplitude (float or complex or Tensor) – The amplitude of the pulse, A. It must either be a scalar or contain a single element.
- width (float or Tensor or None , optional) – The characteristic time for the hyperbolic secant pulse, tpulse. If passed, it must either be a scalar or contain a single element. Defaults to T/12, giving the pulse a full width at half maximum (FWHM) of 0.22T.
- center_time (float or Tensor or None , optional) – The time at which the pulse peaks, tpeak. If passed, it must either be a scalar or contain a single element. Defaults to T/2.
- name (str or None , optional) – The name of the node.
Returns
The sampled hyperbolic secant pulse.
Return type
SEE ALSO
Graph.signals.cosine_pulse_pwc
: Create a Pwc representing a cosine pulse.
Graph.signals.gaussian_pulse_pwc
: Create a Pwc representing a Gaussian pulse.
boulderopal.signals.sech_pulse
: Create a Signal object representing a hyperbolic secant pulse.
Graph.signals.sech_pulse_stf
: Corresponding operation with Stf output.
Graph.signals.square_pulse_pwc
: Create a Pwc representing a square pulse.
Notes
The hyperbolic secant pulse is defined as
Sech(t)=cosh((t−tpeak)/tpulse)A.The FWHM of the pulse is about 2.634tpulse.
Examples
Define a simple sech PWC pulse.
>>> graph.signals.sech_pulse_pwc(
... duration=5, segment_count=50, amplitude=1, name="sech"
... )
<Pwc: name="sech", operation_name="discretize_stf", value_shape=(), batch_shape=()>
>>> result = bo.execute_graph(graph=graph, output_node_names="sech")
>>> result["output"]["sech"]
{
'durations': array([0.1, 0.1, ..., 0.1, 0.1]),
'values': array([0.00558953, 0.00710565, ..., 0.00710565, 0.00558953]),
'time_dimension': 0
}
Define a displaced sech PWC pulse.
>>> graph.signals.sech_pulse_pwc(
... duration=3e-6,
... segment_count=60,
... amplitude=20e6,
... width=0.15e-6,
... center_time=1e-6,
... name="displaced",
... )
<Pwc: name="displaced", operation_name="discretize_stf", value_shape=(), batch_shape=()>
>>> result = bo.execute_graph(graph=graph, output_node_names="sech_displaced")
>>> result["output"]["sech_displaced"]
{
'durations': array([5.e-08, 5.e-08, ..., 5.e-08, 5.e-08]),
'values': array([6.01374318e+04, 8.39283672e+04, ..., 1.06810547e+02, 7.65331014e+01]),
'time_dimension': 0
}
Define a sech pulse with optimizable parameters.
>>> amplitude = graph.optimizable_scalar(
... lower_bound=0, upper_bound=10e6, name="amplitude"
... )
>>> width = graph.optimizable_scalar(
... lower_bound=0.1e-6, upper_bound=0.5e-6, name="width"
... )
>>> center_time = graph.optimizable_scalar(
... lower_bound=1e-6, upper_bound=2e-6, name="center_time"
... )
>>> graph.signals.sech_pulse_pwc(
... duration=3e-6,
... segment_count=32,
... amplitude=amplitude,
... width=width,
... center_time=center_time,
... name="sech_pulse",
... )
<Pwc: name="sech_pulse", operation_name="discretize_stf", value_shape=(), batch_shape=()>