new_corpse_in_scrofulous_control

qctrlopencontrols.new_corpse_in_scrofulous_control(rabi_rotation, maximum_rabi_rate, azimuthal_angle=0.0, name=None)

Creates a CORPSE concatenated within SCROFULOUS (CORPSE in SCROFULOUS) driven control.

CORPSE in SCROFULOUS driven controls are robust to both low-frequency noise sources that perturb the amplitude of the control field and low-frequency dephasing noise.

Parameters

  • rabi_rotation (float) – The total Rabi rotation θ\theta to be performed by the driven control. Must be either π/4\pi/4, π/2\pi/2, or π\pi.
  • maximum_rabi_rate (float) – The maximum Rabi frequency Ωmax\Omega_{\rm max} for the driven control.
  • azimuthal_angle (float , optional) – The azimuthal angle ϕ\phi for the rotation. Defaults to 0.
  • name (str , optional) – An optional string to name the control. Defaults to None.

Returns

The driven control {(δtn,Ωn,ϕn,Δn)}\{(\delta t_n, \Omega_n, \phi_n, \Delta_n)\}.

Return type

DrivenControl

SEE ALSO

new_corpse_control, new_scrofulous_control

Notes

A CORPSE in SCROFULOUS driven control 1 consists of a SCROFULOUS control with each segment replaced by a CORPSE control, which yields nine segments:

$\delta t_n$$\Omega_n$$\phi_n$$\Delta_n$
$\Gamma^{\theta_1}_1/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_1$$0$
$\Gamma^{\theta_1}_2/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_1+\pi$$0$
$\Gamma^{\theta_1}_3/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_1$$0$
$\Gamma^{\theta_2}_1/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_2$$0$
$\Gamma^{\theta_2}_2/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_2+\pi$$0$
$\Gamma^{\theta_2}_3/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_2$$0$
$\Gamma^{\theta_3}_1/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_3$$0$
$\Gamma^{\theta_3}_2/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_3+\pi$$0$
$\Gamma^{\theta_3}_3/\Omega_{\rm max}$$\Omega_{\rm max}$$\phi+\phi_3$$0$

where

\theta_1 &= \theta_3 = \mathrm{sinc}^{-1} \left[\frac{2\cos (\theta/2)}{\pi}\right] \theta_2 &= \pi \phi_1 &= \phi_3 = \cos^{-1}\left[ \frac{-\pi\cos(\theta_1)}{2\theta_1\sin(\theta/2)}\right] \phi_2 &= \phi_1 - \cos^{-1} (-\pi/2\theta_1) $$

(with sinc(x)=sin(x)/x\mathrm{sinc}(x)=\sin(x)/x the unnormalized sinc function) are the SCROFULOUS angles, and

\Gamma^{\theta'}_1 &= 2\pi + \frac{\theta'}{2} - \sin^{-1} \left[ \frac{\sin(\theta'/2)}{2}\right] \Gamma^{\theta'}_2 &= 2\pi - 2\sin^{-1} \left[ \frac{\sin(\theta'/2)}{2}\right] \Gamma^{\theta'}_3 &= \frac{\theta'}{2} - \sin^{-1} \left[ \frac{\sin(\theta'/2)}{2}\right]

are the CORPSE angles corresponding to each SCROFULOUS angle θ{θ1,θ2,θ3}\theta'\in\{\theta_1,\theta_2,\theta_3\}.

References

[1] T. Ichikawa, M. Bando, Y. Kondo, and M. Nakahara, Physical Review A 84, 062311 (2011).

Was this useful?