sparse_pwc_operator
Graph.sparse_pwc_operator(signal, operator)
Create a sparse piecewise-constant operator (sparse-matrix-valued function of time).
Each of the piecewise-constant segments (time periods) is a scalar multiple of the operator.
Parameters
- signal (Pwc) – The scalar-valued piecewise-constant function of time a(t).
- operator (numpy.ndarray or scipy.sparse.spmatrix or Tensor) – The sparse operator A to be scaled over time. If you pass a Tensor or NumPy array, it will be internally converted into a sparse representation.
Returns
The piecewise-constant sparse operator a(t)A.
Return type
SEE ALSO
Graph.constant_sparse_pwc_operator
: Create constant SparsePwcs.
Graph.density_matrix_evolution_pwc
: Evolve a quantum state in an open system.
Graph.pwc_operator
: Corresponding operation for Pwcs.
Graph.sparse_pwc_hermitian_part
: Hermitian part of a SparsePwc operator.
Graph.sparse_pwc_sum
: Sum multiple SparsePwcs.
Graph.state_evolution_pwc
: Evolve a quantum state.
Examples
Create a sparse PWC operator.
>>> from scipy.sparse import coo_matrix
>>> sigma_x = np.array([[0, 1], [1, 0]])
>>> signal = graph.pwc_signal(values=np.array([1, 2, 3]), duration=0.1)
>>> graph.sparse_pwc_operator(signal=signal, operator=coo_matrix(sigma_x))
<SparsePwc: operation_name="sparse_pwc_operator", value_shape=(2, 2)>
See more examples in the How to simulate large open system dynamics user guide.