# constant_pwc

Graph.constant_pwc(constant, duration, batch_dimension_count=0, *, name=None)

Create a piecewise-constant function of time that is constant over a specified duration.

Parameters:
• constant (number or np.ndarray or Tensor) – The value $$c$$ of the function on the constant segment. To create a batch of $$B_1 \times \ldots \times B_n$$ piecewise-constant functions of shape $$D_1 \times \ldots \times D_m$$, provide this constant parameter as an object of shape $$B_1\times\ldots\times B_n\times D_1\times\ldots\times D_m$$.

• duration (float) – The duration $$\tau$$ for the resulting piecewise-constant function.

• batch_dimension_count (int, optional) – The number of batch dimensions, $$n$$ in constant. If provided, the first $$n$$ dimensions of constant are considered batch dimensions. Defaults to 0, which corresponds to no batch.

• name (str or None, optional) – The name of the node.

Returns:

The constant function $$f(t) = c$$ (for $$0\leq t\leq\tau$$) (or a batch of constant functions, if you provide batch_dimension_count).

Return type:

Pwc

Graph.constant_pwc_operator

Create constant Pwc operators.

Graph.constant_stf

Corresponding operation for Stfs.

Graph.pwc

Create piecewise-constant functions.

Notes

For more information on Pwc nodes see the Working with time-dependent functions in Boulder Opal topic.

Examples

Create a batched piecewise-constant function.

>>> constant = np.arange(12).reshape((2, 2, 3))
>>> graph.constant_pwc(
...     constant=constant, duration=0.1, batch_dimension_count=1, name="constant"
... )
<Pwc: name="constant", operation_name="constant_pwc", value_shape=(2, 3), batch_shape=(2,)>
>>> result = bo.execute_graph(graph=graph, output_node_names="constant")
>>> result["output"]["constant"]
{
'durations': array([0.1]),
'values': array([
[[[ 0.,  1.,  2.], [ 3.,  4.,  5.]]],
[[[ 6.,  7.,  8.], [ 9., 10., 11.]]]
]),
'time_dimension': 1
}


See more examples in the Simulate the dynamics of a single qubit using computational graphs tutorial.