sinusoid_stf
signals.sinusoid_stf(amplitude, angular_frequency, phase=0.0)
Create an Stf representing a sinusoidal oscillation.
Parameters
- amplitude (float or complex or Tensor) – The amplitude of the oscillation, . It must either be a scalar or contain a single element.
- angular_frequency (float or Tensor) – The angular frequency of the oscillation, . It must either be a scalar or contain a single element.
- phase (float or Tensor , optional) – The phase of the oscillation, . If passed, it must either be a scalar or contain a single element. Defaults to 0.
Returns
The sampleable sinusoid.
Return type
SEE ALSO
Graph.signals.hann_series_stf
: Create an Stf representing a sum of Hann window functions.
boulderopal.signals.sinusoid
: Create a Signal object representing a sinusoidal oscillation.
Graph.signals.sinusoid_pwc
: Corresponding operation with Pwc output.
Graph.sin
: Calculate the element-wise sine of an object.
Notes
The sinusoid is defined as
Examples
Define an STF oscillation.
>>> oscillation = graph.signals.sinusoid_stf(
... amplitude=2.0, angular_frequency=3.0, phase=np.pi/4
... )
>>> graph.discretize_stf(
... oscillation, duration=10, segment_count=5, name="oscillation"
... )
<Pwc: name="oscillation", operation_name="discretize_stf", value_shape=(), batch_shape=()>
>>> result = bo.execute_graph(graph=graph, output_node_names="oscillation")
>>> result["output"]["oscillation"]
{'durations': array([2., 2., 2., 2., 2.]),
'values': array([-1.20048699, -0.70570922, -0.15471507, 0.4086036 , 0.93937314]),
'time_dimension': 0}
Define a sinusoid with optimizable parameters.
>>> amplitude = graph.optimizable_scalar(
... lower_bound=0, upper_bound=4e3, name="amplitude"
... )
>>> angular_frequency = graph.optimizable_scalar(
... lower_bound=5e6, upper_bound=20e6, name="angular_frequency"
... )
>>> phase = graph.optimization_variable(
... count=1,
... lower_bound=0,
... upper_bound=2*np.pi,
... is_lower_unbounded=True,
... is_upper_unbounded=True,
... name="phase",
... )
>>> graph.signals.sinusoid_stf(
... amplitude=amplitude, angular_frequency=angular_frequency, phase=phase
... )
<Stf: operation_name="multiply", value_shape=(), batch_shape=()>