# linear_ramp_stf

signals.linear_ramp_stf(slope, shift=0.0)

Create an Stf representing a linear ramp.

Parameters:
• slope (float or complex or Tensor) – The slope of the ramp, $$a$$. It must either be a scalar or contain a single element.

• shift (float or complex or Tensor, optional) – The value of the ramp at $$t = 0$$, $$b$$. It must either be a scalar or contain a single element. Defaults to 0.

Returns:

The sampleable linear ramp.

Return type:

Stf

boulderopal.signals.linear_ramp

Create a Signal object representing a linear ramp.

Graph.signals.linear_ramp_pwc

Corresponding operation with Pwc output.

Graph.signals.tanh_ramp_stf

Create an Stf representing a hyperbolic tangent ramp.

Notes

The linear ramp is defined as

$\mathop{\mathrm{Linear}}(t) = a t + b .$

Examples

Define a linear STF ramp.

>>> linear = graph.signals.linear_ramp_stf(slope=4.0, shift=-2.0)
>>> graph.discretize_stf(linear, duration=1, segment_count=5, name="linear")
<Pwc: name="linear", operation_name="discretize_stf", value_shape=(), batch_shape=()>
>>> result = bo.execute_graph(graph=graph, output_node_names="linear")
>>> result["output"]["linear"]
{'durations': array([0.2, 0.2, 0.2, 0.2, 0.2]),
'values': array([-1.6, -0.8,  0. ,  0.8,  1.6]),
'time_dimension': 0}


Define a linear STF ramp with an optimizable slope and root.

>>> slope = graph.optimizable_scalar(
...     lower_bound=-4, upper_bound=4, name="slope"
... )
>>> root = graph.optimizable_scalar(
...     lower_bound=-4, upper_bound=4, name="slope"
... )
>>> shift = - slope * root
>>> graph.signals.linear_ramp_stf(slope=slope, shift=shift)