new_corpse_control

qctrlopencontrols.new_corpse_control(rabi_rotation, maximum_rabi_rate, azimuthal_angle=0.0, name=None)

Creates a compensating for off-resonance with a pulse sequence (CORPSE) driven control.

CORPSE driven controls are robust to low-frequency dephasing noise.

Parameters

  • rabi_rotation (float) – The total Rabi rotation θ\theta to be performed by the driven control.
  • maximum_rabi_rate (float) – The maximum Rabi frequency Ωmax\Omega_{\mathrm max} for the driven control.
  • azimuthal_angle (float , optional) – The azimuthal angle ϕ\phi for the rotation. Defaults to 0.
  • name (str , optional) – An optional string to name the control. Defaults to None.

Returns

The driven control {(δtn,Ωn,ϕn,Δn)}\{(\delta t_n, \Omega_n, \phi_n, \Delta_n)\}.

Return type

DrivenControl

Notes

A CORPSE driven control 1 2 consists of three control segments:

δtn\delta t_nΩn\Omega_nϕn\phi_nΔn\Delta_n
θ1/Ωmax\theta_1/\Omega_{\mathrm max}Ωmax\Omega_{\mathrm max}ϕ\phi00
θ2/Ωmax\theta_2/\Omega_{\mathrm max}Ωmax\Omega_{\mathrm max}ϕ+π\phi+\pi00
θ3/Ωmax\theta_3/\Omega_{\mathrm max}Ωmax\Omega_{\mathrm max}ϕ\phi00

where

θ1=2π+θ2sin1[sin(θ/2)2]θ2=2π2sin1[sin(θ/2)2]θ3=θ2sin1[sin(θ/2)2] \begin{align} \theta_1 &= 2\pi + \frac{\theta}{2} - \sin^{-1} \left[ \frac{\sin(\theta/2)}{2}\right] \\ \theta_2 &= 2\pi - 2\sin^{-1} \left[ \frac{\sin(\theta/2)}{2}\right] \\ \theta_3 &= \frac{\theta}{2} - \sin^{-1} \left[ \frac{\sin(\theta/2)}{2}\right] \end{align}

References

Was this useful?