tanh_ramp_stf
The Boulder Opal Toolkits are currently in beta phase of development. Breaking changes may be introduced.
- tanh_ramp_stf(center_time, ramp_duration, end_value, start_value=None)
Create an Stf representing a hyperbolic tangent ramp.
- Parameters:
center_time (float or Tensor, optional) – The time at which the ramp has its greatest slope, \(t_0\). It must either be a scalar or contain a single element.
ramp_duration (float or Tensor, optional) – The characteristic time for the hyperbolic tangent ramp, \(t_\mathrm{ramp}\). It must either be a scalar or contain a single element.
end_value (float or complex or Tensor) – The asymptotic value of the ramp towards \(t \to +\infty\), \(a_+\). It must either be a scalar or contain a single element.
start_value (float or complex or Tensor, optional) – The asymptotic value of the ramp towards \(t \to -\infty\), \(a_-\). If passed, it must either be a scalar or contain a single element. Defaults to minus end_value.
- Returns:
The sampleable hyperbolic tangent ramp.
- Return type:
See also
signals.linear_ramp_stf()
Create an Stf representing a linear ramp.
signals.tanh_ramp()
Function to create a Signal object representing a hyperbolic tangent ramp.
signals.tanh_ramp_pwc()
Corresponding operation with Pwc output.
tanh()
Calculate the element-wise hyperbolic tangent of an object.
Notes
The hyperbolic tangent ramp is defined as
\[\mathop{\mathrm{Tanh}}(t) = \frac{a_+ + a_-}{2} + \frac{a_+ - a_-}{2} \tanh\left( \frac{t - t_0}{t_\mathrm{ramp}} \right) ,\]where the function’s asymptotic values \(a_\pm\) are defined by:
\[a_\pm := \lim_{t\to\pm\infty} \mathop{\mathrm{Tanh}}(t) ,\]and \(t_0\) is related to \(t_\mathrm{ramp}\) by:
\[\left.\frac{{\rm d}\mathop{\mathrm{Tanh}}(t)}{{\rm d}t}\right|_{t=t_0} = \frac{ (a_+ - a_-)}{2 t_\mathrm{ramp}} .\]With the default value of start_value (\(a_-\)), the ramp expression simplifies to
\[\mathop{\mathrm{Tanh}}(t) = A \tanh\left( \frac{t - t_0}{t_\mathrm{ramp}} \right) ,\]where \(A = a_+\) is the end value (the start value is then \(-A\)).
Examples
Define a simple sampleable hyperbolic tangent ramp.
>>> tanh = graph.signals.tanh_ramp_stf( ... center_time=0.4, ramp_duration=0.2, end_value=2, start_value=-1 ... ) >>> tanh <Stf: operation_name="add", value_shape=(), batch_shape=()> >>> graph.sample_stf(stf=tanh, sample_times=np.linspace(0, 1, 7), name="tanh_samples") <Tensor: name="tanh_samples", operation_name="sample_stf", shape=(7,)> >>> graph.discretize_stf(tanh, duration=1, segment_count=100, name="discretized_tanh") <Pwc: name="discretized_tanh", operation_name="discretize_stf", value_shape=(), batch_shape=()> >>> result = qctrl.functions.calculate_graph( ... graph=graph, output_node_names=["tanh_samples", "discretized_tanh"] ... ) >>> result.output["tanh_samples"]["value"] array([-0.946, -0.735, 0.018, 1.193, 1.805, 1.961, 1.993])
Define a hyperbolic tangent ramp with optimizable parameters.
>>> center_time = graph.optimization_variable( ... count=1, lower_bound=0.25e-6, upper_bound=0.75e-6, name="center_time" ... ) >>> ramp_duration = graph.optimization_variable( ... count=1, lower_bound=0.1e-6, upper_bound=0.3e-6, name="ramp_duration" ... ) >>> end_value = graph.optimization_variable( ... count=1, lower_bound=0, upper_bound=3e6, name="end_value" ... ) >>> graph.signals.tanh_ramp_stf( ... center_time=center_time, ramp_duration=ramp_duration, end_value=end_value ... ) <Stf: operation_name="add", value_shape=(), batch_shape=()>