density_matrix_expectation_value
- Graph.density_matrix_expectation_value(density_matrix, operator, *, name=None)
Calculate the expectation value of an operator with respect to a density matrix.
The last two dimensions of the density matrix must be equal to the last two dimensions of the operator and their batch shapes must be broadcastable.
- Parameters:
- Returns:
The expectation value with shape
(...)
.- Return type:
See also
expectation_value
Expectation value of an operator with respect to a pure state.
inner_product
Inner product of two vectors.
outer_product
Outer product of two vectors.
trace
Trace of an object.
Notes
The expectation value of an operator \(\mathbf{A}\) with respect to a density matrix \(\rho=\sum_i p_i |\psi_i\rangle\langle\psi_i|\) is defined as
\[{\mathrm{Tr}}(A\rho) = {\mathrm{Tr}}(A\sum_i p_i |\psi_i\rangle\langle\psi_i|) = \sum_i p_i \langle\psi_i|A|\psi_i\rangle .\]For more information about the density matrix expectation value, see density matrix on Wikipedia.
Examples
>>> graph.density_matrix_expectation_value( ... np.array([[0.9, 0.], [0., 0.1]]), np.array([[1., 0.], [0., -1.]]), name="expectation" ... ) <Tensor: name="expectation", operation_name="density_matrix_expectation_value", shape=()> >>> result = qctrl.functions.calculate_graph(graph=graph, output_node_names=["expectation"]) >>> result.output["expectation"]["value"] 0.8 >>> graph.density_matrix_expectation_value( ... np.array([[0.9, 0.], [0., 0.1]]), ... np.array([[[0., 1.], [1., 0.]], [[0., -1.j], [1.j, 0.]], [[1., 0.], [0., -1.]]]), ... name="expectation" ... ) <Tensor: name="expectation", operation_name="expectation_value", shape=(3,)> >>> result = qctrl.functions.calculate_graph(graph=graph, output_node_names=["expectation"]) >>> result.output["expectation"]["value"] array([0. +0.j, 0. +0.j, 0.8+0.j])