# linear_ramp¶

The Boulder Opal Toolkits are currently in beta phase of development. Breaking changes may be introduced.

linear_ramp(duration, end_value, start_value=None, start_time=0.0, end_time=None)

Create a Pulse object representing a linear ramp.

Parameters
• duration (float) – The duration of the signal, $$T$$.

• end_value (float or complex) – The value of the ramp at $$t = t_\mathrm{end}$$, $$a_\mathrm{end}$$.

• start_value (float or complex, optional) – The value of the ramp at $$t = t_\mathrm{start}$$, $$a_\mathrm{start}$$. Defaults to $$-a_\mathrm{end}$$.

• start_time (float, optional) – The time at which the linear ramp starts, $$t_\mathrm{start}$$. Defaults to 0.

• end_time (float, optional) – The time at which the linear ramp ends, $$t_\mathrm{end}$$. Defaults to the given duration $$T$$.

Returns

The linear ramp.

Return type

Pulse

pulses.linear_ramp_pwc()

Graph operation to create a Pwc representing a linear ramp.

pulses.linear_ramp_stf()

Graph operation to create a Stf representing a linear ramp.

pulses.tanh_ramp()

Create a Pulse object representing a hyperbolic tangent ramp.

Notes

The linear ramp is defined as

$\begin{split}\mathop{\mathrm{Linear}}(t) = \begin{cases} a_\mathrm{start} &\mathrm{if} \quad t < t_\mathrm{start}\\ a_\mathrm{start} + (a_\mathrm{end} - a_\mathrm{start}) \frac{t - t_\mathrm{start}}{t_\mathrm{end} - t_\mathrm{start}} &\mathrm{if} \quad t_\mathrm{start} \le t \le t_\mathrm{end} \\ a_\mathrm{end} &\mathrm{if} \quad t > t_\mathrm{end} \end{cases} .\end{split}$

Examples

Define a linear ramp with start and end times.

>>> pulse = qctrl.pulses.linear_ramp(
...     duration=4, end_value=2, start_time=1, end_time=3
... )
>>> pulse.export_with_time_step(time_step=0.25)
array([-2.  , -2.  , -2.  , -2.  , -1.75, -1.25, -0.75, -0.25,  0.25,
0.75,  1.25,  1.75,  2.  ,  2.  ,  2.  ,  2.  ])